National Poverty Center Working Paper Series

#11 – 03

March 2011

Partially Identifying the Impact of the Supplemental Nutrition Assistance Program on Food Insecurity among Children: Addressing Endogeneity and Misreporting Using the SIPP

Craig Gundersen, University of Illinois
Brent Kreider, Iowa State University
John Pepper, University of Virginia

This paper is available online at the National Poverty Center Working Paper Series index at: http://wwwnpc.umich.edu/publications/working_papers/

This project was supported by the National Poverty Center (NPC) using funds received from the U.S. Census Bureau, Housing and Household Economics Statistics Division through contract number 50YABC266059/TO002. The opinions and conclusions expressed herein are solely those of the authors and should not be construed as representing the opinions or policy of the NPC or of any agency of the Federal government.
Partially Identifying the Impact of the Supplemental Nutrition Assistance Program on Food Insecurity among Children: Addressing Endogeneity and Misreporting Using the SIPP*

Craig Gundersen
Department of Agricultural and Consumer Economics
University of Illinois cgunder@illinois.edu

Brent Kreider
Department of Economics
Iowa State University
bkreider@iastate.edu

John Pepper Department of Economics University of Virginia
jvpepper@virginia.edu

January 27, 2011

Abstract: Using data from the 2004 panel of the Survey of Income and Program Participation (SIPP), we reexamine the impact of the Supplemental Nutrition Assistance Program (SNAP) – formerly known as the Food Stamp Program – on child food insecurity. By far the largest food assistance program in the United States, SNAP’s central goal is to alleviate food insecurity. In this light, policymakers have been perplexed to find positive associations between food insecurity and the receipt of SNAP. Exploiting recent validation data and detailed information on income and program eligibility in the SIPP, we extend recent research that confronts the two main issues confounding identification of the causal impacts of SNAP on food security: endogenous selection into the program and extensive systematic misreporting of participation status. Imposing relatively weak nonparametric assumptions on the selection and reporting error processes, we provide tight bounds on the impact of SNAP on child food insecurity. The SIPP is especially well suited for this project because, along with containing information on food insecurity, it includes all of the information needed to establish eligibility into the program (other datasets are less comprehensive), and SNAP participation is observed at repeated intervals over time.

Keywords: Food Stamp Program, Supplemental Nutrition Assistance Program, food insecurity, health outcomes, partial identification, treatment effect, nonparametric bounds, classification error

* The authors acknowledge financial support from the Survey of Income and Program Participation Analytic Research Small Grants Competition of the National Poverty Center. Pepper also acknowledges financial support from the Bankard Fund for Political Economy. The views expressed in this paper are solely those of the authors.
I. Introduction

The literature assessing the efficacy of the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp Program, has long puzzled over positive associations between SNAP receipt and various undesirable health outcomes such as food insecurity. SNAP is by far the largest food assistance program in the United States and alleviating food insecurity is the central goal of SNAP (U.S. Department of Agriculture, 1999). As such, policymakers expect this program to play an important role in mitigating the incidence of food insecurity. Paradoxically, however, households receiving SNAP are found much more likely to be food insecure than observationally similar nonparticipating households. Clearly, important questions remain about the efficacy of SNAP, and these questions are especially pressing in light of an unprecedented 30% increase in the food insecurity rate from 2007 to 2008 (Nord et al., 2009).

Using data from the 2004 panel of the Survey of Income and Program Participation (SIPP), we reexamine the impact of SNAP on child food insecurity. SNAP is thought to play an especially vital role for children who constitute 60% of all recipients. In any given month, SNAP provides assistance to more than 15 million children (Wolkowitz and Trippe, 2009), and nearly half of all children will receive assistance at some point during their childhood (Rank and Hirschl, 2009). Moreover, policymakers and program administrators have expressed a great deal of interest in alleviating food insecurity among children. Children in households suffering from food insecurity are more likely to have poor health, psychosocial problems, frequent stomachaches and headaches, behavior problems, worse developmental outcomes, more chronic illnesses, less mental proficiency, and higher levels of iron deficiency with anemia. (See Gundersen and Kreider, 2009 for an overview of this literature.)
Properly evaluating causal impacts of SNAP have proven to be difficult for two central reasons. First, up to half of all eligible children do not participate in the program, and a household’s decision to participate in SNAP is not random. Neglecting this “endogenous selection problem” confounds researchers’ and policymakers’ understanding of SNAP. The second challenge involves the extensive nonrandom misreporting of SNAP participation status in surveys, estimated to be as high as 25% in some studies.¹

While these identification problems have long been known to confound inferences on the impact of SNAP, credible solutions remain elusive. The literature evaluating the causal impact of means-tested assistance programs such as SNAP, for example, typically relies on linear response models coupled with an assumption that some observed instrumental variable (IV), often based on cross-state and time variation in program rules and regulations, affects program participation but otherwise has no effect on the outcomes. Yet SNAP is defined at the federal level and has not substantively changed since the early 1980s, so program rules and regulations are not as useful as instrumental variables.² Moreover, addressing the problem of classification errors is particularly difficult since the classical model assumption of non-mean-reverting errors cannot apply with binary variables, and the systematic underreporting of SNAP participation violates the classical assumption that measurement error arises independently of the true value of the underlying variable. As a result, little prior research has considered the endogenous selection

¹ Using administrative data matched with data from the Survey of Income and Program Participation (SIPP), for example, Bollinger and David (1997) find that errors in self-reported food stamp recipiency exceed 12 percent and are related to respondents’ characteristics including their true participation status, health outcomes, and demographic attributes. Bitler, Currie, and Scholz (2003) provide similar evidence of extensive underreporting in the Current Population Survey (CPS).

² A number of state level policies have been found to be associated with SNAP receipt (see Ratcliffe et al., 2008), but this policy variation may not be exogenous. That is, states may modify SNAP rules and eligibility criteria in response to the extent of food insecurity rates. As an example, due to increases in food insecurity, states may reduce recertification periods to make staying in the program easier for eligible households. This would then lead to an increase in administrative error rates, one measure that is often used as an instrument in studies of the impact of SNAP on outcomes.
problem, and almost no research has assessed how household reporting errors may affect inferences about the impacts of the program.3

We reexamine the impacts of SNAP on child insecurity by extending the recently developed nonparametric statistical methods in Kreider, Pepper, Gundersen, and Jolliffe (2009; KPGJ hereafter). Using data from the National Health and Nutrition Examination Survey (NHANES), KPGJ formally address both the endogenous selection and classification error problems in a single methodological framework by applying partial identification methods that allow one to consider weaker assumptions than required under conventional parametric approaches (also see e.g., Manski, 1995; Pepper, 2000; Molinari, 2010; Kreider and Pepper, 2007 and 2008; Gundersen and Kreider, 2008; Kreider and Hill, 2009). These partial identification methods do not require the linear response model, the classical measurement error model, or a traditional instrumental variable assumption. Instead, we focus on weaker models that are straightforward to motivate in practice and result in logically sharp bounds based on the set of maintained assumptions.

We build on the work in KPGJ in several dimensions. First, we replicate and extend the earlier work of KPGJ using data from the 2004 panel of the Survey of Income and Program Participation (SIPP) and, in particular, the Wave 5 Topical Module which includes a series of food insecurity questions. We also use information on SNAP participation from all eight waves combined with information needed to establish SNAP eligibility from Waves 3 and 6.

3 There are a few notable exceptions that address the selection problem. Borjas (2004), Gundersen and Oliveira (2001), Hoynes and Schanzenbach (2009), Meyerhoefer and Pylypchuk (2008), Van Hook and Balistreri (2006) and Yen et al. (2008) address the selection problem using instrumental variables within a linear response model, and Devaney and Moffitt (1991) and Ratcliffe and McKernan (2010) use nonlinear selection models. Interestingly, Devaney and Moffitt (1991) found no significant evidence of selection bias in their consideration of the effect of food stamps on dietary intakes. Ratcliffe and McKernan (2010), however, estimate that SNAP reduces food insecurity using the selection model, but not otherwise. The one study that explicitly addresses the classification error program is Gundersen and Kreider (2008). They formally allow for the possibility of misclassified program participation, but they focus on identifying descriptive statistics without attempting to identify counterfactual outcomes.
Compared with other datasets, the SIPP data have the advantage of providing much more accurate and detailed information about income and SNAP eligibility. Second, the panel nature of the SIPP allows us to incorporate “partial verification” assumptions that reduce the degree of uncertainty about the reliability of self-reported program participation status. Third, we exploit recent validation data to narrow the range of uncertainty about SIPP households’ rates of false positive and false negative SNAP participation.\(^4\) Finally, similar to a regression discontinuity design, we will introduce into this literature a new way to conceptualize an instrumental variable (IV) assumption using program eligibility as a monotone instrument. There is a long history of using ineligible respondents to identify the impact of a wide array of public policies. While the basic idea of the discontinuity design is appealing, in practice considerable disagreement often arises over the assumption that ineligible respondents reveal the counterfactual outcome distribution for participants. In contrast, the Monotone Instrumental Variable (MIV) assumption allows us to relax this traditional identifying assumption by holding that mean outcomes among subgroups of ineligible respondents bound instead of identify the counterfactual outcome distribution. The detailed income data in the SIPP is central to operationalizing this assumption.

After describing the data in Section 2, we formally define the empirical questions and identification problems in Section 3. Following KPGJ, we modify the Manski (1995) selection bounds to account for classification error in the treatment and we then introduce a number of assumptions that help tighten inferences.

To account for measurement error, we apply three basic assumptions: first, misreporting rates cannot exceed 25%; second, there are no false positive errors; and third, households that report participating in any wave of the SIPP are assumed to provide accurate reports in all waves.

\(^4\) Sources of food stamp validation data for the SIPP include Marquis and Moore (1990), Bollinger and David (1997), Taeuber et al. (2004), and Meyer et al. (2009). We will directly incorporate evidence from these analyses in the next draft of our paper.
These three assumptions are generally consistent with evidence from related validation studies that find errors of commission to be negligible (0.3%), error rates among households reporting not to have received food stamps have been found to lie between 10% and 25%, and those who report SNAP receipt in one period are likely to be accurate reporters in other periods (Bollinger and David, 2005).

To account for the selection problem, we apply three different types of identifying assumptions that restrict the relationship between SNAP and food insecurity. First, the

Monotone Treatment Selection (MTS) assumption formalizes the notion of adverse treatment selection that SNAP recipients are more likely to be food insecure than nonrecipients regardless of whether they actually would have taken up on the program (Manski and Pepper, 2000). Second, we consider several variations of the Monotone Instrumental Variable (MIV) assumption that the latent probability of food insecurity is thought to vary monotonically with certain observed covariates. As in KPGJ, we will assume this probability decreases with the income of a child’s household and, as noted above, we will extend this idea to consider the identifying power of the discontinuity that arises from income eligibility cutoffs. A central advantage to SIPP (in comparison to the December Supplement of the CPS and NHANES) is that income is measured as a continuous rather than as a categorical variable. Finally, we consider the Monotone Treatment Response (MTR) assumption that SNAP cannot lead to an increase in food insecurity (Currie, 2003).

Our empirical results are presented in Section 4, and we draw conclusions in Section 5. As in KPGJ, we find that under the MIV and MTS assumptions the expansion of SNAP to all eligible recipients would lead to declines in food insecurity rates. This result, however, does not hold with modest degrees of misclassification error. Under the joint MIV-MTS-MTR

5 A central goal of SIPP is a more comprehensive and accurate portrayal of income receipt in the U.S. (http://www.census.gov/sipp/intro.html)
assumption, however, we can conclude that such an expansion would lead to declines in food insecurity rates even when allowing for high rates of classification error.

II. Data

We use data from the Survey of Income and Program Participation (SIPP). SIPP, conducted by the U.S. Census Bureau, is a series of national panels designed to measure the effectiveness of existing government programs such as SNAP and the economic situation of people in the United States. Our research primarily relies on data 2004 SIPP which surveyed 46,500 households eight times over a 2 ½ year period.

Using data from the wave 5 interview, we focus our analysis on households with children eligible to receive SNAP. SNAP is available to all households that meet income and asset tests. To be eligible for assistance, a household’s gross income before taxes in the previous month cannot exceed 130 percent of the poverty line, net monthly income cannot exceed the poverty line, and assets must be less than $2,000. As is done in much of the literature, we examine children residing in gross income eligible households (e.g., KPGJ). In particular, we use information on household structure and income from the Wave 5 Core Module to identify who is

6 Given the wealth of information on program participation and income, SIPP has been used in previous research on SNAP. Recent work includes, e.g., Bollinger and David, 2001, 2005; Gundersen and Oliveira, 2001; Ribar and Hamrick, 2003.
7 While the SIPP oversamples low-income households, our analysis is conditioned on income and in particular low-income households. As a result, we do not use the SIPP survey weights. The primary results, however, are not sensitive to using weights: the basic patterns are identical and the qualitative results do not change when we use the person specific weights.
8 There are some exceptions to these rules (e.g., households with someone who has a disability need not meet the gross income criterion; households receiving TANF are categorically eligible) but these criteria hold for the vast majority of households with children.
9 Given our focus on children, however, the gross income tests should not lead to many errors in defining income eligibility. Nearly all gross income-eligible households are also net income-eligible. Using combined data from 1989 to 2004 from the March CPS (which does have information on the returns to assets), Gundersen and Offutt (2005) find that only seven percent of households with children are asset ineligible but gross income eligible. In contrast, the asset test could be important for a sample that includes a high proportion of households headed by an elderly person (Haider et al., 2003).
eligible for SNAP based on the gross income criterion and, out of these households, which have children. In total, 2,936 children reside in income eligible households. The detailed income and asset information included in the SIPP also allows us also to further restrict the sample to asset eligible households.10 Of the 2,936 children residing in income eligible households, 283 are asset ineligible. Thus, our primary sample includes information on 2,653 children who reside in income and asset eligible households.11

Table 1 displays means and standard deviations for the key variables used in this study. For each respondent, we observe information on household income relative to the poverty line. Our sample has an average household income level equal to 72 percent of the poverty line, with respondents claiming to receive SNAP having notably less income than those claiming to have not received benefits from SNAP.12 We also observe a self-reported measure of SNAP receipt in the wave five interview (i.e., in the months of February, March, April, and May of 2005) and an indicator of receipt in any of the eight waves over the 2 $\frac{1}{2}$ year period covered by the 2004 SIPP.13 About half of the eligible households claim to be receiving benefits in wave five, and 66% claim to have received some benefits from SNAP over the 2 $\frac{1}{2}$ years covered by the 2004 SIPP.

10 To determine asset eligibility, we use information from Topical Modules in Waves 3 and 6. Depending on the state, the value of a vehicle above a certain level may be considered an asset unless it is used for work or for the transportation of disabled persons. For this paper, however, we do not include the value of respondents’ vehicles when defining asset eligibility.

11 Our sample is restricted to Wave 5 respondents. We do use information from other waves for our “ever reported receiving SNAP” variable. As a consequence, if information from waves are missing and if the respondent does not report SNAP receipt in any other wave, they receive a value of “0” for “ever reported receiving SNAP”; if respondents do report SNAP receipt in some other wave, they receive a value of “1” for “ever reported receiving SNAP”.

12 To assess the characteristics of our sample relative to other national estimates, we pool data from six rounds of the 2001-2006 CPS, March Supplement. These data indicate that during this same time period, income eligible children lived in families with average income equal to 70 percent of the poverty line.

13 While a notable proportion of SNAP recipients have imputed values of the amount of benefit receipt, the indicator of receipt is not imputed. Thus, if a household reports receiving SNAP, the value of benefits may be imputed; if it reports non-receipt, they would not be imputed a positive value of benefits.
The participation rate of 50% found in wave five is similar to the contemporaneous rates found in other surveys (e.g., the CPS and NHAMES) but substantially lower than analogous rates found when administrative data is used to establish the number of participants. Wolkwitz (2008) finds, for example, that just over half of all eligible households and eighty percent of eligible children participate. Differences between the participation rates from administrative and self-reported surveys are thought to largely reflect classification errors in the self-reported survey data (Bitler et al., 2003; Trippe, Doyle, and Asher 1992). In fact, Bollinger and David (1997, Table 2) provide direct evidence of misreporting in the SIPP by comparing individual reports of food stamp participation status with matched reports from administrative data. They find that 12.0 percent of responses in the 1984 SIPP involve errors of omission while only 0.3 percent involve errors of commission (see also Marquis and Moore, 1990).

Using data from the wave five topical module, we also observe two measures of food insecurity. First, the survey has the food insufficiency question that has been included in numerous surveys since 1977. This question asks respondents to describe their food intake in terms of the following: Which of these statements best describe the food eaten in your household in the last month? Respondents have four choices: enough of the kinds of food we want to eat; enough but not always the kinds of food we want to eat; sometimes not enough to eat; or often not enough to eat. Those households reporting that they sometimes or often do not get enough to eat are defined as “food insufficient.” Second, we include a variable indicating whether the child is not eating enough. This question is the thirteenth question in the Core Food Security Module (CFSM) (Nord et al., 2009; Appendix Table A1).

14 These differences might also reflect the time periods used to measure receipt. While administrative participation rates are often calculated on an annual basis, the rates reported using SIPP are found using self-reports of participation over a fourth month window. Bollinger and David (1997), however, provide direct evidence of misreporting in fourth month period used by the SIPP.
Consistent with previous work on this topic, SNAP recipients tend to have worse health outcomes than eligible nonparticipants. For example, food insufficiency rates are 10.5% for households reported as SNAP recipients, 3.6 percentage points higher than the insufficiency rate of 6.9% among eligible nonparticipants. Likewise, fraction of children not eating enough is about 14% for children in household reporting to receive SNAP but 10% in households reporting not to have received benefits.

III. The Selection and Measurement Problems

Our interest is in learning about the average and status quo treatment effects (ATE and SQTE) among SNAP eligible households. Focusing on binary outcomes, these treatment effects can be expressed as

\[
\text{ATE}(1,0) = P(\text{FI}(1) = 1) - P(\text{FI}(0) = 1) \tag{1a}
\]

and

\[
\text{SQTE}(1) = P(\text{FI}(1) = 1) - P(\text{FI} = 1) \tag{1b}
\]

where \(\text{FI}\) is the realized food insecurity rate, \(\text{FI}(1)\) denotes the insecurity rate if the child were to receive SNAP, \(\text{FI}(0)\) denotes the analogous outcome if the child were not to receive SNAP.\(^{15}\) Let \(S^* = 1\) denote that the household truly receives SNAP benefits and \(S^* = 0\) denote that the household truly does not receive SNAP benefits. Then the realized outcome is

\[
\text{FI} = \text{FI}(1) S^* + \text{FI}(0) (1 - S^*)
\]

\(^{15}\) The notation is simplified by suppressing the conditioning on subpopulations of interest. For this analysis, we focus on the children who are eligible for food stamps. In much of the literature examining the impact of food stamp receipt, other observed covariates are motivated as a means of controlling for factors influencing a family’s decision to take up food stamps. In the usual regression framework, researchers attempt to “correctly” choose a set of control variables for which the exogenous selection assumption applies. Inevitably, however, there is much debate about whether the researcher omitted “important” explanatory variables. In contrast, conditioning on covariates in our approach serves only to define subpopulations of interest. The problem is well-defined regardless of how the subpopulations are specified (Pepper, 2000).
FI(1)(1 - S*). Thus, the average treatment effect (ATE) reveals how the food insecurity rate would differ if all eligible children received SNAP versus the food insecurity rate if all eligible children did not receive SNAP. The status quo treatment effect (SQTE) compares the food insecurity rate when all eligible recipients receive SNAP with the realized rate under the status quo. That is, the SQTE reveals how the food insecurity rate would change if all eligible nonrecipients were to take up benefits.

Our objective is to place sharp bounds on ATE and SQTE under various sets of maintained assumptions about the selection process into SNAP and about the reporting process. To appropriately bound these parameters, one needs to address two key methodological issues. First, even if SNAP participation were observed for all eligible households, the outcome FI(1) is counterfactual for all children who did not receive SNAP, while FI(0) is counterfactual for all children who did receive SNAP. This is referred to as the selection problem. Second, true participation status, S*, may not be observed for all respondents. This is referred to as the measurement or classification error problem.

A. The Selection Problem

Suppose S* is observed such that there is no measurement error in self-reports of SNAP participation (an assumption we relax below). The selection problem is highlighted by writing the first term of Equations (1a) and (1b) as

\[
P[\text{FI}(1) = 1] = P[\text{FI}(1) = 1| S^* = 1] P[S^* = 1] + P[\text{FI}(1) = 1| S^* = 0] P[S^* = 0]. \tag{2}
\]
The sampling process identifies the selection probability, $P(FL^* = 1)$, the censoring probability $P(FL^* = 0)$, and the expectation of outcomes conditional on the outcome being observed, $P[FL(1) = 1 | S^* = 1]$. Still, the sampling process cannot reveal the mean outcome conditional on censoring, $P[FL(1) = 1 | S^* = 0]$. Given this censoring, $P[FL(1) = 1]$ is not point-identified by the sampling process alone. Analogously, the second term in Equation (1a), $P[FL(1) = 1]$, is not identified.

Since the latent probability $P[FL(1) = 1 | S^* = 0]$ must lie within $[0,1]$, it follows that

$$P[FL=1, S^* = 1] \leq P[FL(1) = 1] \leq P[FL=1, S^* = 1] + P[S^* = 0] \quad (3)$$

Intuitively, the width of this bound equals the censoring probability, $P[S^* = 0]$. Thus, if a large fraction of children receive SNAP, the width of the bound on is relatively narrow. In that case, the data cannot reveal much information about the distribution of $FL(0)$, so the analogous bound of the quantity $P[FL(0) = 1]$ is larger. Taking the difference between the upper bound on $P[FL(1) = 1]$ and the lower bound on $P[FL(0) = 1]$ obtains a sharp upper bound on ATE, and analogously a sharp lower bound (Manski, 1995). As a result, the width of the bound on the average treatment effect always equals 1. In the absence of identifying restrictions, the data cannot reveal the sign of the effect of SNAP on health outcomes.

B. The Classification Error Problem

To highlight this measurement problem, let the latent variable Z^* indicate whether a report is accurate, where $Z^* = 1$ if $S^* = S$ and $Z^* = 0$ otherwise. Using this variable, we can further decompose the first term of Equations (1a) and (1b) as

$$P[FL(1) = 1] \quad (4)$$

$$= P[FL(1) = 1, S^* = 1] + P[FL(1) = 1 | S^* = 0]P[S^* = 0]$$
\[= \{P[\text{FI}(1) = 1, S = 1] - \hat{e}_1 + \hat{e}_0\} + P[\text{FI}(1) = 1|S^* = 0]\{P[S = 0] + (\hat{e}_0, \hat{e}_1) - (\hat{e}_1, \hat{e}_0)\} \]

where \(\hat{e}_1\) and \(\hat{e}_0\) denote the fraction of false positive and false negative classifications of SNAP recipients, respectively, for children realizing health outcome \(j = 1, 0\). The first term, \(P[\text{FI}(1) = 1, S^* = 1]\), is not identified because of the classification error problem. The second term is not identified because of both the selection and classification error problems. As above, the data cannot reveal the counterfactual outcome distribution, \(P[\text{FI}(1) = 1|S^* = 0]\), regardless of whether participation is measured accurately, and in the presence of classification errors, the sampling process does not reveal the proportion of respondents that received assistance, \(P[S^*]\).

If SNAP receipt, \(S^*\), is observed, then these bounds are identified by the sampling process. With measurement error, however, \(S^*\) is not observed and the Manski worst-case selection bounds are not identified. In particular, we have

\[P[\text{FI}=1, S = 1] - \hat{e}_1 + \hat{e}_0 \leq P[\text{FI}(1) = 1] \leq P[\text{FI}=1, S = 1] + P[S = 0] + \hat{e}_0 - \hat{e}_1 \quad (5) \]

Thus, without restrictions on the measurement error process, the false reporting rates \(\theta\) are not identified and the data are uninformative about the ATE and SQTE. For example, we cannot rule out the possibility that respondents in poor health (\(FI = 1\)) and claiming to receive SNAP, \(S=1\), all misreport receipt so that the lower bound is 0. Likewise, we cannot rule out the possibility that the upper bound is 1.

To address the classification error problem, we consider the following three assumptions:
(A1) **Upper Bound Error Rate Assumption:** \(P(Z^* = 0) \leq Q_u \)

(A2) **No False Positives Assumption:** If \(S = 1 \), then \(S^* = S = 1 \)

(A3) **Verification Assumption:** If \(V = 1 \), then \(S^* = S \)

where \(Q_u \) places a known upper bound on the degree of data corruption and \(V \) indicates if the respondent reported receiving SNAP in any wave of the 2004 SIPP. Thus, Assumption (A1) bounds the classification error rate. The literature evaluating the causal impacts of SNAP has uniformly maintained the assumption of accurate reporting, in which case \(Q_u \) is implicitly assumed to be zero. At the opposite extreme, \(Q_u \) can be set equal to 1 if nothing is known about the reliability of the participation responses. As noted above, validation studies find false negative error rates to lie between 10% and 25%. These studies also that find errors of commission are negligible (Bollinger and David, 1997). Thus, Assumption (A2) rules out false positive reports; respondents reporting to have received SNAP are known provide accurate reports.

Finally, panel data from the SIPP allows us to “verify” the receipt of SNAP for some respondents based on the reporting patterns over time. Bollinger and David (2005), examining data from the 1984 SIPP, find that respondents who accurately report SIPP participation in one period are more likely to accurately report in other periods. Moreover, self-reports of receipt are generally thought to be accurate, as indicated by A2. Thus, under Assumption (A3), we “verify” that a respondent is an accurate reporter in wave 5 (of receipt or nonreceipt) if, in at least one wave she reported receiving SNAP.\(^{16}\) In our sample, 66 percent of SNAP eligible households with children report receiving SNAP in at least one of wave of the 2004 SIPP, whereas 50.3% of

\(^{16}\) A logical extension would be to validate responses using other welfare programs. So, for example, a response of food stamp receipt can be validated if the respondent reported receiving any welfare program benefits during any wave of the survey (not just SNAP). In principle, TANF and SSI receipt would be especially relevant as both confer categorical eligibility for SNAP.
the sample reports receiving SNAP in wave 5 (see Table 1). Thus, the verification assumption A3 confers substantial identifying power.

Throughout, we maintain Assumption A1. In particular, to assess the sensitivity of inferences to classification errors in SNAP receipt, we vary Q_u between 0 and 0.25. From Assumption (A1), we know

\[
0 \min_{\theta_0, \theta_1} 1, 0 \equiv 0 \min_{\theta_0, \theta_1} 1, 1 \equiv
\]

\[
0 \min_{\theta_0, \theta_1} 0, 0 \equiv 0 \min_{\theta_0, \theta_1} 0, 1 \equiv
\]

and \(\theta_i^* + \theta_0^* + \theta_0^* \leq Q_u \) \hspace{1cm} (6)

Given these restrictions on the rates for false reporting, \(\theta \), we can now bound the latent probability as follows:

\[
P[FI = 1, S = 1] \leq P[FI = 1] \leq P[FI = 1, S = 1] + P[S = 0] \leq \quad \text{(7)}
\]

Assumptions A2 and A3 further restrict the feasible values of the false reporting rates, \(\theta \). Both A2 and A3 imply that \(\theta_i^* = \theta_0^* = 0 \) and from A3 we know that \(\min_{\theta_0, \theta_1} 1, 0, 0 \equiv \) and \(\min_{\theta_0, \theta_1} 0, 0, 0 \equiv \) \(\text{arbitrary errors} \). We compare results under A1 alone (the “arbitrary errors” model) to results found when A1 is combined with A2 and A3 (the “verification” model).

When SNAP receipt is known to be fully accurately reported such that $Q_u = 0$, the bounds in Equation (7) simplify to the well-known worst-case selection bounds reported in Manski (1995). The width of the bounds on the ATE can be no smaller than 1, and these bounds expand with the degree of potential classification error. Classification errors (weakly) increase the width
of the bounds.17 Without stronger assumptions on the selection process, the data cannot identify whether participation in SNAP increases or decreases the prevalence of food insecurity.

C. Middle Ground Selection Models

To derive useful inferences about the impact of SNAP on health, prior information on the selection process must be brought to bear. While the exogenous selection assumption maintained in much of the literature is untenable, there are a number of middle ground assumptions that can narrow the bounds by restricting the relationship between SNAP participation, health outcomes, and observed covariates. We consider the identifying power of three monotonicity assumptions: one on treatment selection, one on an instrument, and one on treatment response.

The *Monotone Treatment Selection* (MTS) assumption (Manski and Pepper, 2000) places structure on the selection mechanism through which children become SNAP recipients. The literature suggests that unobserved factors associated with poor health are likely to be positively associated with the decision to take up the program. In this case, recipients have worse latent health outcomes than nonrecipients on average.18 We formalize the MTS assumption as follows:

\begin{align*}
(A4) & \quad P[FI(1) = 1| S^* = 0] \leq P[FI(1) = 1| S^* = 1] \quad \text{and} \\
& \quad P[FI(0) = 1| S^* = 0] \leq P[FI(0) = 1| S^* = 1].
\end{align*}

17 Interestingly, under the A2 assumption of no false positive reports where $\theta_{1B,*} = \theta_{0B,*} = 0$, the bounds on $P[FI(1) = 1]$ in Equation (7) are also identical to the Manski bounds, regardless of the value of Q_a. In this case, the latent SNAP receipt probability cannot be less than the reported probability, $P(S=1)$, and likewise, the latent outcome probability under full participation cannot be less than the observed joint probability of having poor health and receiving SNAP benefits, $P(FI=1, S=1).

18 For information on differences between food stamp recipients and nonrecipients over commonly observed covariates, see Cunyngham (2005). For speculation about differences over unobserved characteristics, see, e.g., Gundersen and Oliveira (2001) and Currie (2003).
That is, conditional on either treatment $t = 1$ or 0, eligible households that receive SNAP, $S^* = 1$, tend to have a higher prevalence of food insecurity than eligible households that have not taken up SNAP, $S^* = 0$.

The Monotone Instrumental Variable (MIV) assumption (Manski and Pepper, 2000) formalizes the notion that the latent probability of a negative health outcome, $P[FI(t) = 1]$ varies monotonically with certain observed covariates. Arguably, for example, this probability decreases with the poverty income ratio (PIR), the ratio of a family's income to the poverty threshold set by the U.S. Census Bureau accounting for the family's composition. To formalize this idea, let v be the monotone instrumental variable such that

$$\text{(A5)} \quad u_1 = u \leq u_2 \quad \text{implies} \quad P[FI(t) = 1 \mid v = u_2] \leq P[FI(t) = 1 \mid v = u] \leq P[FI(t) = 1 \mid v = u_1]$$

for $t = 0, 1$.

While these conditional probabilities are not identified, they can be. Let $LB(u)$ and $UB(u)$ be the known lower and upper bounds evaluated at $v = u$, respectively, given the available information. Then the MIV assumption formalized in Manski and Pepper (2000, Proposition 1) implies:

$$\sup_{u \in [LB(u), UB(u)]} \text{1} \leq \inf_{u \in [LB(u), UB(u)]} \text{1}.$$

19 Table 3 of Nord et al. (2009) demonstrates that food insecurity rates in the U.S. fall as income increases: 50.3% for those under the poverty line, 46.3% for those under 130% of the poverty line, and 42.2% for those under 185% of the poverty line versus 10.1% for those over 185% of the poverty line.
In the absence of other information, these bounds on $P(\text{FI}(t) = 1 | v = u)$ is sharp. Bounds on the unconditional latent probability, $P(\text{FI}(t) = 1)$ can then be obtained using the law of total probability.\footnote{To find the MIV bounds on the rates of poor health, one takes the appropriate weighted average of the plug-in estimators of lower and upper bounds across 26 PIR groups (more than 100 households per cell) observed in the data. As discussed in Manski and Pepper (2000), this MIV estimator is consistent but biased in finite samples. We employ Kreider and Pepper’s (2007) modified MIV estimator that accounts for the finite sample bias using a nonparametric bootstrap correction method.}

In addition to using income relative to the poverty line as an MIV, we also formalize the notion that eligibility criteria for SNAP might be monotonically related to the latent outcomes. For example, income ineligible children – i.e., children residing in households with income greater than 130\% of the federal poverty line – are likely to have better average health outcomes the income eligible children. Many program evaluations rely on ineligible respondents to reveal the counterfactual outcome distribution under nonparticipation. This, for example, is the central idea of the regression discontinuity design.\footnote{For example, Schanzenbach (2007) and Bhattacharya et al. (2006) use ineligible children to identify the impact of school meal programs on health}

In our application, we observe two groups of ineligible respondents: income eligible children who fail the asset test ($v_2 = \text{assets ineligible}$ and children whose household income is between 130\% and 150\% of the poverty line ($v_3 = \text{income ineligible}$). While these comparison groups are unlikely to satisfy the standard instrumental variable restriction that the latent food insecurity outcomes are mean independent of eligibility status, the MIV assumption holding that mean response varies monotonically across these subgroups seems credible. Children in households with assets or incomes above the eligibility cutoff for (i.e., above 130\% of the poverty line), are likely to have no worse average latent health outcomes than children living in eligible households. That is, $\max \{ P(\text{FI}(t) = 1 | v_2 = 1), P(\text{FI}(t) = 1 | v_3 = 1) \} \leq P(\text{FI}(t) = 1)$. Moreover, for these ineligible subgroups where $v_2 = 1$ or $v_3 = 1$, there is no selection or classification error problem; we assume $S^* = 0$.\footnote{The assumption that $S^* = 0$ (similar to a sharp discontinuity design) may not be valid for the observed income}
\(v_2=1\) and \(P[\text{FI}(0) = 1 | v_2=1] \) but provide no information on \(P[\text{FI}(1) = 1]\). Thus, this MIV restriction implies that \(\max \{ P[\text{FI} = 1 | v_2 = 1] , P[\text{FI} = 1 | v_3 = 1] \} \leq P[\text{FI}(0) = 1]\).

Finally, the Monotone Treatment Response (MTR) assumption (Manski, 1997) formalizes the common idea that SNAP cannot lead to a reduction in health status. Despite the observed correlations in the data, there is a general consensus among policymakers and researchers that the SNAP program cannot increase the rate of food insecurity (Currie, 2003). That is,

\[\text{(A6)} \quad \text{FI}(1) \leq \text{FI}(0).\]

While widely accepted, this assumption alone signs the effect of the SNAP program on food insecurity. Under the MTR assumption, the ATE and SQTE of receiving SNAP must be nonpositive (Manski, 1997 and Pepper, 2000). To assess the sensitivity of inferences to this MTR restriction, we consider this assumption separately from the MTS and MIV assumptions.

The population bounds derived in this section account only for identification uncertainty and abstract away from the additional layer of uncertainty associated with sampling variability. These bounds will be estimated by replacing population probabilities with the corresponding sample probabilities. Confidence intervals that cover the true value of ATE or SQTE with 95% probability will be constructed using methods provided by Imbens and Manski (2004).

threshold where income measures used to determine eligibility may reflect different time periods than measures collected in the SIPP. A household whose eligibility was established in one period may have income that exceeds the threshold when the survey is conducted. With a “fuzzy” threshold where \(S^ = 1\) for some “ineligible” respondents, the methods can be adapted to allow for selection and measurement error within “ineligible” subgroups. In this case, the data would provide informative bounds on both latent outcome probabilities.*
IV. Results

The analytical approach allows us to trace out sharp bounds on ATE and SQTE under different assumptions about the selection and measurement error problems. To do this, we evaluate the bounds as a function of the degree of uncertainty about the extent of SNAP reporting errors and layer on different types of restrictions aimed at addressing the selection problem.

We begin by considering the traditional case where selection into SNAP participation is exogenous. That is, \(P[FS(t) \mid S^*] = P[FS(t)]\). Under this assumption, the ATE is given by

\[
\Delta = P[FS = 1 \mid S^* = 1] - P[FS = 1 \mid S^* = 0],
\]

the difference in the probability of being food insecure between children receiving and not receiving SNAP. Figure 1 traces out sharp bounds on \(\Delta\) as \(Q_u\) varies between 0 and 0.25; throughout, we allow for the possibility that all reports of SNAP receipt are accurate. These bounds on \(\Delta\) are calculated using methods in Kreider and Pepper (2007) for the case of arbitrary errors (with only A1 imposed) and in Kreider and Hill (2009) for the verification case (with both A1 and A3 imposed). The associated table displays bounds for the selected values \(Q_u = \{0, 0.05, 0.10, 0.25\}\) along with Imbens-Manski (2004) confidence intervals that cover the true value of \(\Delta\) with 95% probability.

If all SNAP participation responses are known to be accurate \((Q_u = 0)\), then \(\Delta\) is point-identified in Figure 1 as 0.105-0.069 = 0.036 > 0 (consistent with the descriptive statistics in Table 1). This difference in children’s food insufficiency rates between recipients and nonrecipients is statistically significant with a p-value less than 0.01. When \(Q_u > 0\), the food insufficiency gap can only be partially identified. When an arbitrary 5 percent of households
may misreport FS, for example, Δ can lie anywhere in the range $[-0.148, 0.167]$, with the 95 percent confidence interval of $[-0.160, 0.179]$. These ranges narrow to $[0.019, 0.095]$ and $[0.004, 0.109]$, respectively, under the verification assumptions A2 and A3.

The key result in Figure 1 is that identification of Δ deteriorates with Q_u sufficiently rapidly, even under the verification assumptions, that we cannot identify that the food insecurity gap is positive if more than 10 percent of households may have misreported FS. Thus, even assuming exogenous selection and ignoring the uncertainty associated with sampling variability, small levels of reporting error imply that the sign of ATE is not identified. Therefore, a conclusion that food insecurity is more prevalent among SNAP recipients than among eligible nonrecipients requires a some confidence in self-reported food participation status, an assumption not supported by validation studies. Similar findings have been reported using data from the CPS (see Gundersen and Kreider, 2008) and the NHAMES (see KPGJ, 2009).

Figure 1 also displays estimates of the bounds on ATE when we relax the exogenous selection assumption. If no assumptions are made about how eligible households select themselves into SNAP receipt and the SNAP participation indicator is presumed to be fully accurately reported ($Q_u = 0$), the bounds simplify to the well-known Manski (1995) selection bounds reported in Equation (3). These wide bounds reveal the inherent ambiguity created by the selection problem. The width of the ATE bounds equals 1, the width of the SQTE bounds equals $P(S=0) = 0.497$, and both treatment effect bounds always include zero.

Potential classification errors increase uncertainty about the ATE. When Q_u rises from 0 to 0.10, for example, the ATE bounds under the verification assumptions expand from $[-0.485, 0.515]$ with a width of 1 to $[-0.535, 0.531]$ with a width of 1.066. Interestingly, however, the SQTE bounds are not sensitive to classification errors under the verification model assumptions.
A2 and A3. This follows from the fact the outcome probability under full take-up, $P[FI(1) = 1]$, does not vary with Q_u and thus the bounds on the SQTE will not either. Regardless of the value of Q_u, SQTE is estimated to lie within the range $[-0.034, 0.462]$ (see Appendix Table A1).

Importantly, this result does not imply that the SQTE is more likely to be positive than negative. Rather, we learn that effect of expanding SNAP to all eligible households must lie within these bounds. That is, without imposing any assumptions on the selection problem, we learn that SNAP may to lead sharp increase in food insufficiency, it may have no impact at all, or it may lead to a modest decrease. Below, under stronger restrictions on the selection problem, we find evidence that the SQTE is, in fact, negative.

These wide bounds highlight a researcher’s inability to make strong inferences about the efficacy of SNAP without making assumptions that address the problem of unknown counterfactuals. In the absence of restrictions that address the selection problem, we cannot rule out the possibility that SNAP has a large positive or negative impact on the likelihood of poor health. These bounds can be narrowed substantially, however, under common monotonicity assumptions on treatment response, treatment selection, and the relationship between the latent outcome and observed instrumental variables.

To narrow the bounds, we first combine the MIV assumptions with the MTS assumption. The results are displayed in Figures 2A and 2B, and Table 2. The most striking finding is that the joint MIV-MTS model identifies the ATE and SQTE as strictly negative and substantial as long as the degree of misreporting is small. If participation is accurately reported, $Q_u = 0$, for example, the bounds on the ATE are estimated to be $[-0.402, -0.040]$ and the SQTE is nearly

\[\text{\footnotesize [21]}\]

\[\text{\footnotesize 23 In Appendix A, we include figures and tables which trace out the bounds using each of these assumptions – the MIV and MTS – separately. While these bounds are notably narrower than the no assumption bounds in Figure 1, the assumptions imposed separately do not identify the ATE in this application. Only when we combine the MIV and MTS assumptions, do we estimate bounds that reveal the sign of the treatment effect.}\]
identified, with the estimated bounds of [-0.014, -0.007] (see Table 2). Thus, if participation is accurately reported, these estimates for the ATE suggest that SNAP reduces food insufficiency by at least 4 points and the prevalence of not eating enough by at least 7.2 points. Likewise, the estimated SQTE implies that expanding SNAP to all eligible households would reduce the prevalence of food insufficiency by about a percentage point, or about 10% relative to the status quo rate of 0.087.

While these findings seem to indicate that the SNAP plays an important role in reducing food insufficiency, identification of the sign of the ATE is precluded under even small degrees of classification error. Figure 2 shows that we can only identify $\text{ATE} < 0$ as long as SNAP misreporting is confined to no more than about 2% of households (under both arbitrary errors and no false positive errors). Moreover, even with fully accurate reporting, the 90 percent confidence intervals include zero. Thus, we cannot reject the hypothesis that the program is ineffective in promoting food sufficiency. Still, while these findings do not clearly identify the sign of the ATE, the ambiguity created by the selection and measurement problems is notably reduced under this joint MIV-MTS model. Under low rates of misreporting, SNAP appears to have at worst negligible impacts on food insecurity and at best may substantially reduce the prevalence of negative health outcomes.

Finally, under the joint MTR-MTS-MIV assumption, Figure 3 and Table 2 reveal that the ATE and SQTE can be identified as strictly negative even for large degrees of arbitrary SNAP misreporting. Under this joint assumption, our estimated bounds for ATE on food insufficiency rates vary from [-0.402, -0.083] when $Q_u = 0$ to [-0.75, -0.083] when $Q_u = 0.25$. Thus, under this

24 These estimates imply that SNAP leads to substantial reductions in food insecurity. Consider, for example, the household food insufficiency rate where the estimated bound on the ATE of -0.04 (see Figure 2A) is found by differencing the estimated upper bound on $P(FI(1)=1)$ of 0.081 and the lower bound on $P(FI(0)=1)$ of 0.121. Thus, the estimates imply SNAP reduces the prevalence of childhood food insufficiency by at least one third, from 0.12 to 0.08. Likewise, SNAP is estimated to reduce the prevalence of not eating enough by at least -0.07 points, from 0.158 to 0.086, or 46%.
model, we find that SNAP reduces the food insufficiency rate by at least 8 percentage points and perhaps much more. Similar results are found for the prevalence of children not eating enough.

Interestingly, for the SQTE on the food insufficiency rate, the estimated lower bound often just exceeds the estimated upper bound suggesting that the parameter is point identified.25 In particular, when $Q_a = 0$ under the arbitrary error model and for all Q_a in the verification model, the SQTE is estimated to be about -0.02. When the rate of possible misreporting increases from 0 to 0.25 under the arbitrary error model, the lower bound decreases to -0.087. Thus, these estimated SQTE bounds imply that expanding SNAP to all eligible households would reduce the prevalence of food insufficiency by at least two percentage points, or 25\% relative to the status quo rate of 0.08, and perhaps much more.

V. Conclusion

The literature assessing the efficacy of SNAP has long puzzled over positive associations between SNAP receipt and various undesirable health-related outcomes such as food insecurity. These associations are often ascribed to the self-selection of more vulnerable households into SNAP. Misreporting of SNAP recipiency also confounds identification of the causal impacts of participation on health status. In this paper, we reconsidered the impact of SNAP on food insecurity using a single unifying framework that formally accounts for both of these identification problems. Our partial identification approach is well-suited for this application where conventional assumptions strong enough to point-identify the causal impacts are not

25 There are two reasons the lower bound exceeds the upper bound: first, the underlying model may be invalid and second, sampling variability. In this application, the bounds do cross but are nearly equal and confidence intervals do not cross. We take this as evidence that the model is not violated and that the crossing reflects sampling variability.
necessarily credible and there remains much uncertainty about even the qualitative impacts of SNAP.

Using data from the 2004 SIPP, we make transparent how assumptions on the selection and reporting error processes shape inferences about the causal impacts of SNAP recipiency on food insecurity. The potentially troubling correlations in the data provide a misleading picture of the impacts of SNAP. Without assumptions aimed to address the selection and measurement problems, the sampling process cannot identify the sign of the effect of SNAP on health. The worst-case selection bounds always include zero, and even small amounts of measurement error are sufficient to cast doubt on the conclusion that food insecurity and other poor health outcomes are more prevalent among SNAP recipients than among eligible nonrecipients.

Combining the MTS and MIV assumptions, however, allows us sign the impact of SNAP. Under this relatively weak nonparametric model used to address the selection problem, we find that SNAP reduces the prevalence of food insufficiency. In the absence of measurement error, the joint MTS-MIV model reveals that households would be at least 4 percentage points more likely to be food sufficient if all eligible households received SNAP vs. all not receiving them. When some households may misreport participation status, however, there remains uncertainty about the efficacy of the program. Under the joint MTR-MTS-MIV assumption, the basic conclusion that SNAP reduces the prevalence of food insecurity holds even for large degrees of measurement error. In this case, we find that households would be at least 8 percentage points more likely to be food sufficient if all eligible households received SNAP vs. not receiving them when up to a quarter of households may misreport.
References

American Journal of Agricultural Economics, 84(3): 875-887.

Table 1: Means by Reported Food Stamp Program Participation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gross Income Eligible Children</th>
<th>Recipients (S=1)</th>
<th>Nonrecipients (S=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income to poverty ratio</td>
<td>0.717 (0.392)</td>
<td>0.630*** (0.367)</td>
<td>0.806 (0.397)</td>
</tr>
<tr>
<td>Food Stamp Recipient</td>
<td>0.503 (0.500)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Insufficiency</td>
<td>0.087 (0.282)</td>
<td>0.105*** (0.306)</td>
<td>0.069 (0.254)</td>
</tr>
<tr>
<td>Child Not Eating</td>
<td>0.118 (0.323)</td>
<td>0.138*** (0.345)</td>
<td>0.099 (0.298)</td>
</tr>
<tr>
<td>Either Measure</td>
<td>0.157 (0.364)</td>
<td>0.186*** (0.389)</td>
<td>0.128 (0.334)</td>
</tr>
<tr>
<td>N</td>
<td>2653</td>
<td>1335</td>
<td>1318</td>
</tr>
</tbody>
</table>

Notes: Standard deviations in parentheses. The estimated means for the Food Stamp recipient population are superscripted with *, **, or *** to indicate that they are statistically significantly different from the means for the nonrecipient population, with p-values less than 0.1, 0.05, 0.01, respectively, based on Wald statistics corrected for the sample design.
Figure 1A. Sharp Bounds on the ATE for **Food Insufficient Household**: Endogenous vs. Exogenous SNAP Participation

Selected values of \(\lambda \)

<table>
<thead>
<tr>
<th></th>
<th>Exogenous Selection</th>
<th>Endogenous Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda=0)</td>
<td>Arbitrary Errors</td>
<td>Verification</td>
</tr>
<tr>
<td></td>
<td>[0.036, 0.036] (^b)</td>
<td>[0.036, 0.036]</td>
</tr>
<tr>
<td></td>
<td>[0.017, 0.055] (^c)</td>
<td>[0.017, 0.055]</td>
</tr>
<tr>
<td>(\lambda=0.05)</td>
<td>[-0.148, 0.167]</td>
<td>[-0.585, 0.600]</td>
</tr>
<tr>
<td></td>
<td>[-0.160, 0.179]</td>
<td>[-0.597, 0.612]</td>
</tr>
<tr>
<td>(\lambda=0.10)</td>
<td>[-0.173, 0.185]</td>
<td>[-0.638, 0.650]</td>
</tr>
<tr>
<td></td>
<td>[-0.186, 0.198]</td>
<td>[-0.650, 0.662]</td>
</tr>
<tr>
<td>(\lambda=0.25)</td>
<td>[-0.247, 0.271]</td>
<td>[-0.788, 0.800]</td>
</tr>
<tr>
<td></td>
<td>[-0.265, 0.290]</td>
<td>[-0.800, 0.812]</td>
</tr>
</tbody>
</table>

\(^a\) Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.

\(^b\) Point estimates of the population bounds

\(^c\) 90% confidence intervals around ATE are calculated using methods from Imbens-Manski (2004) with 1,000 pseudosamples
Figure 1B. Sharp Bounds on the ATE for **Children Not Eating Enough:**
Endogenous vs. Exogenous SNAP Participation†

![Graph showing sharp bounds on ATE for exogenous vs. endogenous selection.]

Selected values of \(\lambda \)

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>Exogenous Selection</th>
<th>Endogenous Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arbitrary Errors</td>
<td>Verification</td>
</tr>
<tr>
<td>(\lambda = 0)</td>
<td>[0.039, 0.039]</td>
<td>[0.039, 0.039]</td>
</tr>
<tr>
<td></td>
<td>[0.019, 0.059]</td>
<td>[0.019, 0.059]</td>
</tr>
<tr>
<td>(\lambda = 0.05)</td>
<td>[-0.138, 0.215]</td>
<td>[0.016, 0.133]</td>
</tr>
<tr>
<td></td>
<td>[-0.154, 0.226]</td>
<td>[0.000, 0.147]</td>
</tr>
<tr>
<td>(\lambda = 0.10)</td>
<td>[-0.221, 0.236]</td>
<td>[-0.009, 0.133]</td>
</tr>
<tr>
<td></td>
<td>[-0.233, 0.249]</td>
<td>[-0.025, 0.147]</td>
</tr>
<tr>
<td>(\lambda = 0.25)</td>
<td>[-0.307, 0.337]</td>
<td>[-0.106, 0.133]</td>
</tr>
<tr>
<td></td>
<td>[-0.324, 0.355]</td>
<td>[-0.129, 0.147]</td>
</tr>
</tbody>
</table>

\(a \) Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.

\(b \) Point estimates of the population bounds

\(c \) 90% confidence intervals around ATE are calculated using methods from Imbens-Manski (2004) with 1,000 pseudosamples
Figure 2A. Sharp Bounds on the ATE for **Food Insufficient Household**: Endogenous SNAP Participation with MIV, MTS, and MTR

Selected values of λ

<table>
<thead>
<tr>
<th>λ</th>
<th>Arbitrary Errors</th>
<th>Verification a</th>
<th>Arbitrary Errors</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[-0.402, -0.040] b</td>
<td>[-0.402, -0.040]</td>
<td>[-0.402, -0.083]</td>
<td>[-0.402, -0.083]</td>
</tr>
<tr>
<td></td>
<td>[-0.480, 0.044] c</td>
<td>[-0.480, 0.044]</td>
<td>[-0.482, -0.008]</td>
<td>[-0.482, -0.008]</td>
</tr>
<tr>
<td>0.05</td>
<td>[-0.506, 0.084]</td>
<td>[-0.452, 0.059]</td>
<td>[-0.506, -0.083]</td>
<td>[-0.452, -0.083]</td>
</tr>
<tr>
<td></td>
<td>[-0.584, 0.123]</td>
<td>[-0.532, 0.088]</td>
<td>[-0.584, -0.021]</td>
<td>[-0.532, -0.023]</td>
</tr>
<tr>
<td>0.10</td>
<td>[-0.575, 0.094]</td>
<td>[-0.502, 0.059]</td>
<td>[-0.575, -0.083]</td>
<td>[-0.502, -0.083]</td>
</tr>
<tr>
<td></td>
<td>[-0.649, 0.141]</td>
<td>[-0.582, 0.088]</td>
<td>[-0.649, -0.022]</td>
<td>[-0.582, -0.023]</td>
</tr>
<tr>
<td>0.25</td>
<td>[-0.725, 0.148]</td>
<td>[-0.652, 0.059]</td>
<td>[-0.725, -0.083]</td>
<td>[-0.652, -0.083]</td>
</tr>
<tr>
<td></td>
<td>[-0.790, 0.225]</td>
<td>[-0.731, 0.088]</td>
<td>[-0.790, -0.022]</td>
<td>[-0.731, -0.023]</td>
</tr>
</tbody>
</table>

a Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.
b Point estimates of the population bounds
c 90% confidence intervals around ATE are calculated using methods from Imbens-Manski (2004) with 1,000 pseudosamples
Figure 2B. Sharp Bounds on the ATE for **Children Not Eating Enough**: Endogenous SNAP Participation with MIV, MTS, and MTR\(^\dagger\)

Selected values of \(\lambda \)

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>MIV & MTS</th>
<th>MIV, MTS, & MTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda = 0)</td>
<td>[-0.394, -0.072](^b)</td>
<td>[-0.394, -0.072]</td>
</tr>
<tr>
<td></td>
<td>[-0.475, 0.022](^c)</td>
<td>[-0.475, 0.022]</td>
</tr>
<tr>
<td>(\lambda = 0.05)</td>
<td>[-0.496, 0.065]</td>
<td>[-0.444, 0.031]</td>
</tr>
<tr>
<td></td>
<td>[-0.576, 0.156]</td>
<td>[-0.525, 0.117]</td>
</tr>
<tr>
<td>(\lambda = 0.10)</td>
<td>[-0.591, 0.070]</td>
<td>[-0.494, 0.034]</td>
</tr>
<tr>
<td></td>
<td>[-0.665, 0.147]</td>
<td>[-0.575, 0.113]</td>
</tr>
<tr>
<td>(\lambda = 0.25)</td>
<td>[-0.743, 0.138]</td>
<td>[-0.644, 0.034]</td>
</tr>
<tr>
<td></td>
<td>[-0.810, 0.230]</td>
<td>[-0.724, 0.112]</td>
</tr>
</tbody>
</table>

\(a \) Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.

\(b \) Point estimates of the population bounds

\(c \) 90% confidence intervals around ATE are calculated using methods from Imbens-Manski (2004) with 1,000 pseudosamples.
Table 2: Sharp Bounds on the ATE and SQTE of Food Stamp Participation on Food Insecurity Under Arbitrary Errors and No False Positives: With MIV
(household food insufficiency measure)

<table>
<thead>
<tr>
<th>Q_r</th>
<th>Arbitrary Errors</th>
<th>Verified Responses†</th>
<th>Arbitrary Errors</th>
<th>Verified Responses‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>[-0.402, -0.040]</td>
<td>p.e.</td>
<td>[-0.402, -0.040]</td>
<td>p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.482, 0.044]</td>
<td>CI</td>
<td>[-0.482, 0.044]</td>
<td>CI</td>
</tr>
<tr>
<td>0.05</td>
<td>[-0.506, 0.084]</td>
<td>p.e.</td>
<td>[-0.452, 0.059]</td>
<td>p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.584, 0.123]</td>
<td>CI</td>
<td>[-0.532, 0.088]</td>
<td>CI</td>
</tr>
<tr>
<td>0.10</td>
<td>[-0.575, 0.094]</td>
<td>p.e.</td>
<td>[-0.502, 0.059]</td>
<td>p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.649, 0.141]</td>
<td>CI</td>
<td>[-0.582, 0.088]</td>
<td>CI</td>
</tr>
<tr>
<td>0.25</td>
<td>[-0.725, 0.148]</td>
<td>p.e.</td>
<td>[-0.652, 0.059]</td>
<td>p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.790, 0.225]</td>
<td>CI</td>
<td>[-0.731, 0.088]</td>
<td>CI</td>
</tr>
</tbody>
</table>

0	[-0.402, -0.083]	p.e.	[-0.402, -0.083]	p.e.
	[-0.482, -0.008]	CI	[-0.482, -0.008]	CI
0.05	[-0.506, -0.083]	p.e.	[-0.452, -0.083]	p.e.
	[-0.584, -0.021]	CI	[-0.532, -0.023]	CI
0.10	[-0.575, -0.083]	p.e.	[-0.502, -0.083]	p.e.
	[-0.649, -0.022]	CI	[-0.582, -0.023]	CI
0.25	[-0.725, -0.083]	p.e.	[-0.652, -0.083]	p.e.
	[-0.790, -0.022]	CI	[-0.731, -0.023]	CI

† Confidence intervals around ATE and SQTE are calculated using methods from Imbens-Manski (2004) with 1000 pseudosamples.

‡ Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.
Table A.1: Sharp Bounds on the ATE and SQTE of Food Stamp Participation on Food Insecurity
Given Unknown Counterfactuals and Potentially Misclassified Participation Status:
Various Assumptions about Selection
(using household food insufficiency measure)

<table>
<thead>
<tr>
<th>Q_n</th>
<th>ATE (1)</th>
<th>SQTE (2)</th>
<th>ATE (3)</th>
<th>SQTE (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arbitrary Errors</td>
<td>Verified Responses</td>
<td>Arbitrary Errors</td>
<td>Verified Responses</td>
</tr>
<tr>
<td>0</td>
<td>[-0.485, 0.151] p.e.</td>
<td>[-0.485, 0.151] p.e.</td>
<td>[-0.034, 0.462] p.e.</td>
<td>[-0.034, 0.462] p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.497, 0.528] CI</td>
<td>[-0.497, 0.528] CI</td>
<td>[-0.039, 0.475] CI</td>
<td>[-0.039, 0.475] CI</td>
</tr>
<tr>
<td>0.05</td>
<td>[-0.585, 0.600] p.e.</td>
<td>[-0.535, 0.531] p.e.</td>
<td>[-0.084, 0.512] p.e.</td>
<td>[-0.034, 0.462] p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.597, 0.612] CI</td>
<td>[-0.547, 0.544] CI</td>
<td>[-0.089, 0.525] CI</td>
<td>[-0.039, 0.475] CI</td>
</tr>
<tr>
<td>0.10</td>
<td>[-0.638, 0.650] p.e.</td>
<td>[-0.585, 0.531] p.e.</td>
<td>[-0.087, 0.562] p.e.</td>
<td>[-0.034, 0.462] p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.650, 0.662] CI</td>
<td>[-0.597, 0.544] CI</td>
<td>[-0.094, 0.575] CI</td>
<td>[-0.039, 0.475] CI</td>
</tr>
<tr>
<td>0.25</td>
<td>[-0.788, 0.800] p.e.</td>
<td>[-0.735, 0.531] p.e.</td>
<td>[-0.087, 0.712] p.e.</td>
<td>[-0.034, 0.462] p.e.</td>
</tr>
<tr>
<td></td>
<td>[-0.800, 0.812] CI</td>
<td>[-0.747, 0.544] CI</td>
<td>[-0.094, 0.725] CI</td>
<td>[-0.039, 0.475] CI</td>
</tr>
</tbody>
</table>

No Monotonicity Assumptions

MTS Assumption

MTR and MTS Assumptions

\(^\dagger\) Confidence intervals around ATE and SQTE are calculated using methods from Imbens-Manski (2004) with 1000 pseudosamples.

\(^\ddagger\) Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.
Figure A-1A. Sharp Bounds on the ATE for **Food Insufficient Household**: Endogenous SNAP Participation, with vs. without MIV†

Selected values of λ

<table>
<thead>
<tr>
<th></th>
<th>No MIV</th>
<th>With MIV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arbitrary Errors</td>
<td>Verification^b</td>
</tr>
<tr>
<td>λ=0</td>
<td>[-0.485, 0.515]^b</td>
<td>[-0.485, 0.515]</td>
</tr>
<tr>
<td></td>
<td>[-0.497, 0.528]^c</td>
<td>[-0.497, 0.528]</td>
</tr>
<tr>
<td>λ=0.05</td>
<td>[-0.585, 0.600]</td>
<td>[-0.535, 0.531]</td>
</tr>
<tr>
<td></td>
<td>[-0.597, 0.612]</td>
<td>[-0.547, 0.544]</td>
</tr>
<tr>
<td>λ=0.10</td>
<td>[-0.638, 0.650]</td>
<td>[-0.585, 0.531]</td>
</tr>
<tr>
<td></td>
<td>[-0.650, 0.662]</td>
<td>[-0.597, 0.544]</td>
</tr>
<tr>
<td>λ=0.25</td>
<td>[-0.788, 0.800]</td>
<td>[-0.735, 0.531]</td>
</tr>
<tr>
<td></td>
<td>[-0.800, 0.812]</td>
<td>[-0.747, 0.544]</td>
</tr>
</tbody>
</table>

^a Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.

^b Point estimates of the population bounds

^c 90% confidence intervals around ATE are calculated using methods from Imbens-Manski (2004) with 1,000 pseudosamples
Figure A-1B. Sharp Bounds on the ATE for **Children Not Eating Enough**: Endogenous SNAP Participation, with vs. without MIV†

Selected values of λ

<table>
<thead>
<tr>
<th>λ</th>
<th>No MIV</th>
<th>With MIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda=0$</td>
<td>[-0.483, 0.517]b</td>
<td>[-0.483, 0.517]</td>
</tr>
<tr>
<td></td>
<td>[-0.495, 0.529]c</td>
<td>[-0.495, 0.529]</td>
</tr>
<tr>
<td>$\lambda=0.05$</td>
<td>[-0.583, 0.616]</td>
<td>[-0.533, 0.544]</td>
</tr>
<tr>
<td></td>
<td>[-0.595, 0.628]</td>
<td>[-0.545, 0.556]</td>
</tr>
<tr>
<td>$\lambda=0.10$</td>
<td>[-0.652, 0.666]</td>
<td>[-0.583, 0.544]</td>
</tr>
<tr>
<td></td>
<td>[-0.665, 0.678]</td>
<td>[-0.595, 0.566]</td>
</tr>
<tr>
<td>$\lambda=0.25$</td>
<td>[-0.802, 0.816]</td>
<td>[-0.733, 0.544]</td>
</tr>
<tr>
<td></td>
<td>[-0.815, 0.828]</td>
<td>[-0.745, 0.556]</td>
</tr>
</tbody>
</table>

a Responses to the participation question treated as accurate among all households ever reporting food stamp receipt.

b Point estimates of the population bounds

c 90% confidence intervals around ATE are calculated using methods from Imbens-Manski (2004) with 1,000 pseudosamples